Face Anti-spoofing (FAS) is essential to secure face recognition systems from various physical attacks. However, recent research generally focuses on short-distance applications (i.e., phone unlocking) while lacking consideration of long-distance scenes (i.e., surveillance security checks). In order to promote relevant research and fill this gap in the community, we collect a large-scale Surveillance High-Fidelity Mask (SuHiFiMask) dataset captured under 40 surveillance scenes, which has 101 subjects from different age groups with 232 3D attacks (high-fidelity masks), 200 2D attacks (posters, portraits, and screens), and 2 adversarial attacks. In this scene, low image resolution and noise interference are new challenges faced in surveillance FAS. Together with the SuHiFiMask dataset, we propose a Contrastive Quality-Invariance Learning (CQIL) network to alleviate the performance degradation caused by image quality from three aspects: (1) An Image Quality Variable module (IQV) is introduced to recover image information associated with discrimination by combining the super-resolution network. (2) Using generated sample pairs to simulate quality variance distributions to help contrastive learning strategies obtain robust feature representation under quality variation. (3) A Separate Quality Network (SQN) is designed to learn discriminative features independent of image quality. Finally, a large number of experiments verify the quality of the SuHiFiMask dataset and the superiority of the proposed CQIL.
translated by 谷歌翻译
为了解决数学单词问题,人类学生利用达到不同方程解决方案的各种推理逻辑。但是,自动求解器的主流序列到序列方法旨在解码通过人类注释监督的固定溶液方程。在本文中,我们通过利用一组控制代码来指导模型考虑某些推理逻辑并解码从人类参考转换的相应方程式表达式来指导模型来考虑某些推理逻辑并解码相应的方程式表达式来提出一个受控方程生成求解器。经验结果表明,我们的方法普遍提高了单人(MATH23K)和多项(draw1k,hmwp)基准的性能,在具有挑战性的多重未知数据集上,高达13.2%的准确性。
translated by 谷歌翻译
集成多模式数据以改善医学图像分析,最近受到了极大的关注。但是,由于模态差异,如何使用单个模型来处理来自多种模式的数据仍然是一个开放的问题。在本文中,我们提出了一种新的方案,以实现未配对多模式医学图像的更好的像素级分割。与以前采用模式特异性和模态共享模块的以前方法不同,以适应不同方式的外观差异,同时提取共同的语义信息,我们的方法基于具有精心设计的外部注意模块(EAM)的单个变压器来学习在训练阶段,结构化的语义一致性(即语义类表示及其相关性)。在实践中,可以通过分别在模态级别和图像级别实施一致性正则化来逐步实现上述结构化语义一致性。采用了提出的EAM来学习不同尺度表示的语义一致性,并且一旦模型进行了优化,就可以丢弃。因此,在测试阶段,我们只需要为所有模态预测维护一个变压器,这可以很好地平衡模型的易用性和简单性。为了证明所提出的方法的有效性,我们对两个医学图像分割方案进行了实验:(1)心脏结构分割,(2)腹部多器官分割。广泛的结果表明,所提出的方法的表现优于最新方法,甚至通过极有限的训练样本(例如1或3个注释的CT或MRI图像)以一种特定的方式来实现竞争性能。
translated by 谷歌翻译
尽管近年来从CT/MRI扫描中自动腹部多器官分割取得了很大进展,但由于缺乏各种临床方案的大规模基准,对模型的能力的全面评估受到阻碍。收集和标记3D医学数据的高成本的限制,迄今为止的大多数深度学习模型都由具有有限数量的感兴趣或样品器官的数据集驱动,这仍然限制了现代深层模型的力量提供各种方法的全面且公平的估计。为了减轻局限性,我们提出了AMO,这是一个大规模,多样的临床数据集,用于腹部器官分割。 AMOS提供了从多中心,多供应商,多模式,多相,多疾病患者收集的500 CT和100次MRI扫描,每个患者均具有15个腹部器官的体素级注释,提供了具有挑战性的例子,并提供了挑战性的例子和测试结果。在不同的目标和场景下研究健壮的分割算法。我们进一步基准了几种最先进的医疗细分模型,以评估此新挑战性数据集中现有方法的状态。我们已公开提供数据集,基准服务器和基线,并希望激发未来的研究。信息可以在https://amos22.grand-challenge.org上找到。
translated by 谷歌翻译
对不确定性的深入了解是在不确定性下做出有效决策的第一步。深度/机器学习(ML/DL)已被大大利用,以解决处理高维数据所涉及的复杂问题。但是,在ML/DL中,推理和量化不同类型的不确定性的探索少于其他人工智能(AI)领域。特别是,自1960年代以来,在KRR上已经研究了信仰/证据理论,以推理并衡量不确定性以提高决策效率。我们发现,只有少数研究利用了ML/DL中的信念/证据理论中的成熟不确定性研究来解决不同类型的不确定性下的复杂问题。在本调查论文中,我们讨论了一些流行的信念理论及其核心思想,这些理论涉及不确定性原因和类型,并量化它们,并讨论其在ML/DL中的适用性。此外,我们讨论了三种主要方法,这些方法在深度神经网络(DNN)中利用信仰理论,包括证据DNN,模糊DNN和粗糙的DNN,就其不确定性原因,类型和量化方法以及其在多元化问题中的适用性而言。域。根据我们的深入调查,我们讨论了见解,经验教训,对当前最新桥接信念理论和ML/DL的局限性,最后是未来的研究方向。
translated by 谷歌翻译
放射学报告的印象部分总结了调查结果部分中最突出的观察结果,是放射科医生与医生进行交流的最重要部分。总结发现很耗时,对于缺乏经验的放射科医生可能会出错,因此自动印象产生引起了很大的关注。通过编码器框架,大多数先前的研究都探讨了纳入额外知识(例如,静态预定义的临床本体或额外的背景信息)。然而,他们通过单独的编码器对这种知识进行编码,以将其视为其模型的额外输入,这在利用其与原始发现的关系方面受到限制。为了解决限制,我们提出了一个统一的框架,以综合的方式利用额外的知识和原始发现,以便可以以适当的方式提取关键信息(即关键词及其关系),以促进印象产生。详细说明,对于每个输入发现,它是由文本编码器编码的,并且图形是通过其实体和依赖树构造的。然后,采用图形编码器(例如,图形神经网络(GNNS))在构造的图中模拟关系信息。最后,为了强调调查结果中的关键词,引入了对比度学习以映射正面样本(通过掩盖非钥匙单词构建)更紧密,并将负面的样本推开(通过掩盖关键词构建)。 Openi和Mimic-CXR的实验结果证实了我们提出的方法的有效性。
translated by 谷歌翻译
去耦时尚表示是指将空间和时间特征分解成尺寸无关的因素。尽管以前的基于RGB-D的运动识别方法通过紧密耦合的多模态时空表示来实现了有希望的性能,但由于紧密的时空缠绕的建模,它们仍然在小数据设置下遭受(i)优化困难;(ii)信息冗余通常包含与分类弱相关的大量边际信息; (iii)由晚期融合不足引起的多模态起峰型信息之间的低相互作用。为了缓解这些缺点,我们建议去除并循环基于RGB-D的运动识别的时空表示。具体而言,我们解开了学习时空表示的任务到3个子任务:(1)通过解耦的空间和时间建模网络学习高质量和维度独立特征。 (2)重新汇总解耦表示,以确定更强的时空依赖。 (3)引入跨型自适应后融合(CAPF)机制,用于从RGB-D数据捕获跨模态时空信息。这些新颖设计的无缝组合形成了强大的时空表示,而不是在四个公共运动数据集上的最先进的方法实现了更好的性能。我们的代码可在https://github.com/damo-cv/motionrgbd获得。
translated by 谷歌翻译
In this paper we explore the task of modeling (semi) structured object sequences; in particular we focus our attention on the problem of developing a structure-aware input representation for such sequences. In such sequences, we assume that each structured object is represented by a set of key-value pairs which encode the attributes of the structured object. Given a universe of keys, a sequence of structured objects can then be viewed as an evolution of the values for each key, over time. We encode and construct a sequential representation using the values for a particular key (Temporal Value Modeling - TVM) and then self-attend over the set of key-conditioned value sequences to a create a representation of the structured object sequence (Key Aggregation - KA). We pre-train and fine-tune the two components independently and present an innovative training schedule that interleaves the training of both modules with shared attention heads. We find that this iterative two part-training results in better performance than a unified network with hierarchical encoding as well as over, other methods that use a {\em record-view} representation of the sequence \cite{de2021transformers4rec} or a simple {\em flattened} representation of the sequence. We conduct experiments using real-world data to demonstrate the advantage of interleaving TVM-KA on multiple tasks and detailed ablation studies motivating our modeling choices. We find that our approach performs better than flattening sequence objects and also allows us to operate on significantly larger sequences than existing methods.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
When using LiDAR semantic segmentation models for safety-critical applications such as autonomous driving, it is essential to understand and improve their robustness with respect to a large range of LiDAR corruptions. In this paper, we aim to comprehensively analyze the robustness of LiDAR semantic segmentation models under various corruptions. To rigorously evaluate the robustness and generalizability of current approaches, we propose a new benchmark called SemanticKITTI-C, which features 16 out-of-domain LiDAR corruptions in three groups, namely adverse weather, measurement noise and cross-device discrepancy. Then, we systematically investigate 11 LiDAR semantic segmentation models, especially spanning different input representations (e.g., point clouds, voxels, projected images, and etc.), network architectures and training schemes. Through this study, we obtain two insights: 1) We find out that the input representation plays a crucial role in robustness. Specifically, under specific corruptions, different representations perform variously. 2) Although state-of-the-art methods on LiDAR semantic segmentation achieve promising results on clean data, they are less robust when dealing with noisy data. Finally, based on the above observations, we design a robust LiDAR segmentation model (RLSeg) which greatly boosts the robustness with simple but effective modifications. It is promising that our benchmark, comprehensive analysis, and observations can boost future research in robust LiDAR semantic segmentation for safety-critical applications.
translated by 谷歌翻译